

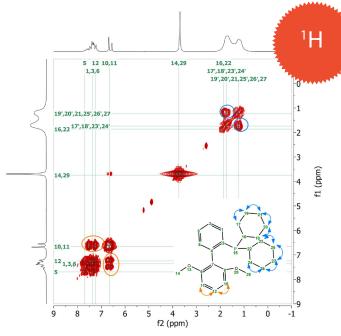
Spinsolve Multi Xⁿ

The next Generation of fully automated multi-nuclear NMR


Measure all the nuclei you need with one NMR spectrometer in a fully automatic way

Benefits of the Multi Xⁿ Probe

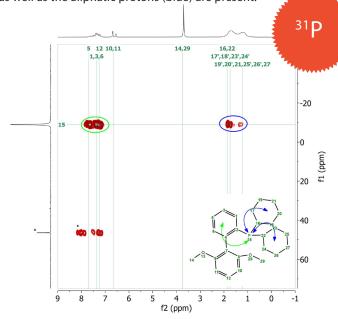
- Configure the system with unlimited number of nuclei
- Instant switching between nuclei without any loss in sensitivity
- No manual intervention required for switching nuclei
- Works with optional autosampler so all available nuclei can be acquired unattended
- Interleave multinuclear experiments for online reaction monitoring
- 1D and 2D experiments calibrated at factory, switch back and forth without recalibration
- No training requirement for operator


13 C and 31 P measured in a Spinsolve Multi X^n

Extensive software library of pre-calibrated protocols for all available nuclei

2D COSY

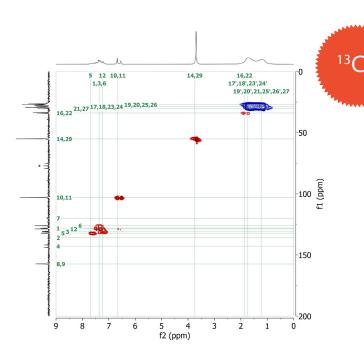
The 2D COSY experiment allows one to identify coupled ¹H nuclei as they generate cross peaks out of the diagonal of the 2D data set.

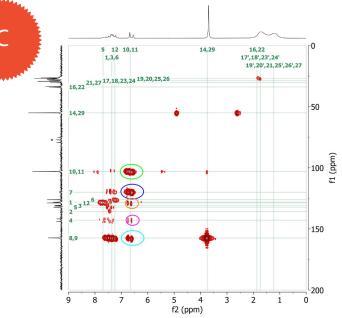

 $^{1}\text{H}\;$ 2D COSY experiment of a 800 mM SPHOS sample in $\text{CDCI}_{_{3}}$ acquired on a Spinsolve Multi X 60 MHz system.

2D HSQC-ME

The HSQC is a powerful sequence widely used to correlate the ¹H with the one-bond coupled ¹³C nuclei.

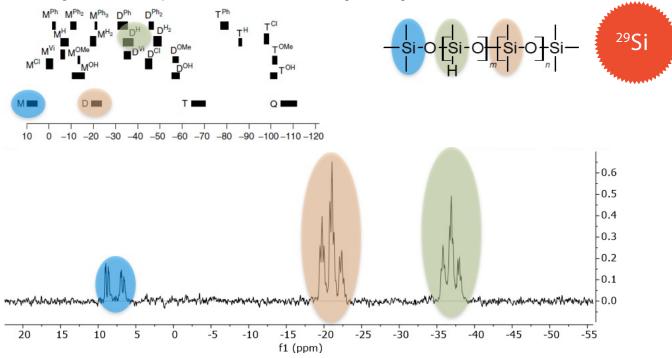
2D ³¹P-HMBC


The long-range ¹H-³¹P correlations can be observed for the phosphorus atom at position 15. It can clearly be seen that both couplings to the aromatic protons 1, 3, 5 and 6 (green) as well as the aliphatic protons (blue) are present.

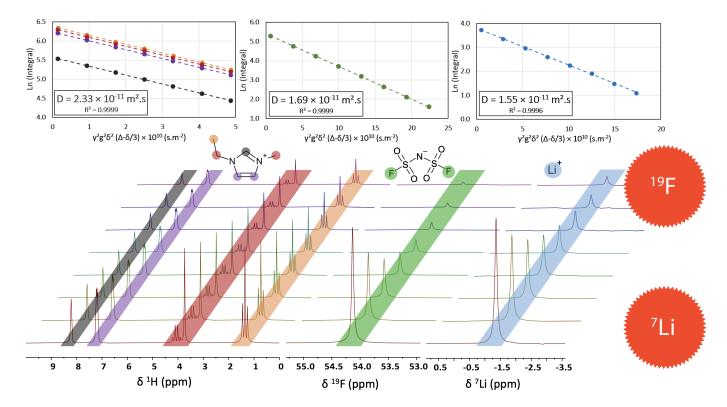

 $^{31}\text{P-HMBC}$ NMR spectrum of a 800 mM SPHOS sample in CDCI_3 showing the long-range couplings between ^{1}H and ^{31}P nuclei.

2D HMBC

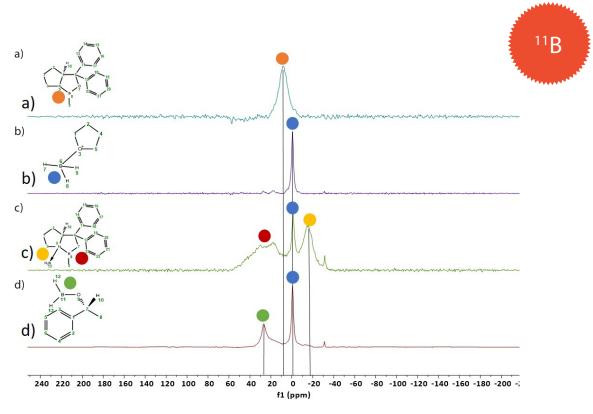
The Heteronuclear Multiple Bond Correlation (HMBC) experiment shows the long-range correlation of protons 10 and 11 with carbons 4, 7, 8, 9 and 12 (the sequence shows the correlation with quaternary carbons, too).


HSQC-ME spectrum of a 800 mM SPHOS sample in $\rm CDCl_3$ showing the correlation between the 1H (horizontal) and ^{13}C (vertical) signals.

HMBC spectrum of a 800 mM SPHOS sample in $\rm CDCl_3$ showing the long-range couplings between $^1\rm H$ and $^{13}\rm C$ nuclei.


Spinsolve Multi Xⁿ with ²⁹Si for structural characterization

The strong dependency of ²⁹Si chemical shift to the chemical environment makes silicon NMR a suitable tool to determine the composition of polysiloxanes. The figure below shows the DEPT spectrum of poly(dimethylsiloxane-comethylhydrosiloxane), trimethylsilyl terminated, measured by setting the X channel of the Spinsolve to silicon. The result is in excellent agreement with the predicted chemical shifts of the single building blocks.


Spinsolve Multi Xⁿ with optional PFG to measure molecular mobility

Pulsed field gradient (PFG) experiments are useful to asses the molecular mobility of different molecules dissolved in a mixture. By adding a gradient coil to the Spinsolve Multi Xⁿ you can measure the diffusion coefficient of molecules containing any of the nuclei available on the spectrometer. The example below shows the ¹H, ¹⁹F and ⁷Li PFG experiments measured on a LiFSI:EmimFSI ionic liquid sample dissolved at a molar concentration of 2:3.

CBS reduction of acetophenone studied by ¹¹B NMR

To demonstrate the power of ¹¹B NMR we followed a typical CBS (Corey, Bakshi, Shibata) reduction reaction of acetophenone to its corresponding alcohol by using both ¹¹B and ¹³C measurements on a Spinsolve Multi Xⁿ system. The CBS reduction employs a boron containing catalyst (a), which is first activated with a borane solution in THF (b). The activated species (c) serves as the catalyst in the reduction of acetophenone. The final product (d) can nicely be observed in ¹¹B NMR. The final asymmetric alcohol is obtained after an acidic work up employing HCl in MeOH. These steps have been confirmed by ¹³C NMR performed on the same spectrometer.

Spinsolve Multi Xⁿ

- Nuclei: All models can measure ¹H and ¹⁹F in the first channel and all the X nuclei you need, like ¹³C, ¹⁵N, ²⁹Si, ³¹P, ⁷Li, ¹¹B, and more, on the second channel
- Includes a powerful multi-line solvent suppression method
- Includes X-decoupled proton acquisition for all available X nuclei
- Available for ULTRA models with exceptional linewidth specifications
- Compatible with Spinsolve Temperature Control system
- Compatible with 0.5 T/m Pulsed Field Gradients for multi-nuclei diffusion studies

Contact us now for a quote, to request a demo, or to measure your samples

Email: <u>sales@magritek.com</u>

Website: www.magritek.com/contact-us

GERMANY +49 241 9278 7270 UNITED STATES +1 855 667 6835

UNITED KINGDOM +44 7468 529 615 NEW ZEALAND +64 4 477 7096

For a complete listing of our global offices and distributors visit: www.magritek.com/about-us/distributors/