Brucine (2,3-Dimethoxystrychnidin-10-one) is an alkaloid, structurally related to strychnine, but less toxic. Figure 1 shows the 1H NMR spectrum of a 250 mM Brucine sample in CDCl$_3$ measured in a single scan taking 10 seconds to acquire.

1D Proton spectrum

![1H NMR spectrum of a 250 mM Brucine sample in CDCl$_3$ measured on a Spinsolve 90 MHz system in a single scan.](image)

Figure 1: 1H NMR spectrum of a 250 mM Brucine sample in CDCl$_3$ measured on a Spinsolve 90 MHz system in a single scan.

1D Carbon spectrum

Figure 2 shows the 13C NMR spectrum of 250 mM Brucine in CDCl$_3$ acquired using NOE polarization transfer from 1H to 13C and 1H decoupling. The 1D Carbon experiment using NOE is sensitive to all 13C nuclei in the sample. It clearly resolves all the expected resonances.

![13C NMR spectrum of a 250 mM Brucine sample in CDCl$_3$ measured on a Spinsolve 90 MHz system in 120 minutes.](image)

Figure 2: 13C NMR spectrum of a 250 mM Brucine sample in CDCl$_3$ measured on a Spinsolve 90 MHz system in 120 minutes.
The 2D COSY experiment allows one to identify coupled 1H nuclei as they generate cross peaks out of the diagonal of the 2D data set. In Figure 2 a large number of cross peaks can be nicely observed. For example, the protons at position 6 and 11 (light green) couple with each other. Furthermore, proton 19 couples with proton 10 (light blue), 12 (orange) and 20 (pink). In addition, the couplings between protons 8 and 9 (dark blue) as well as the couplings of protons 8 and 9 with protons 14 and 15 (dark green) can be nicely observed.

Figure 3: 1H 2D COSY experiment of a 250 mM Brucine sample in CDCl$_3$ acquired in 13 minutes on a Spinsolve 90 MHz system (top); zoom into the aliphatic region (0.5-5.0 ppm) of the 1H 2D COSY spectrum which underlines the superb resolution.
2D JRES spectrum

This experiment is useful to identify the chemical groups generating a single line for each group by collapsing the J-coupling along the direct direction. The multiplets are generated along the vertical direction.

![2D JRES spectrum](image)

2D HSQC-ME

The HSQC is a powerful sequence widely used to correlate the 1H with the one-bond coupled 13C nuclei. The Spinsolve is equipped with a multiplicity edited version (HSQC-ME) of this method. It provides the editing power of the DEPT-135 sequence, which is useful to differentiate between the signals of the CH$_2$ groups (blue) from the CH and CH$_3$ groups (red). Figure 5 shows the HSQC-ME spectrum of a 250 mM Brucine sample in CDCl$_3$ acquired in 2 minutes. The measurement time was optimized applying NUS (non uniform sampling).

![2D HSQC-ME spectrum](image)
2D HMBC
To obtain long-range ^1H-^{13}C correlations through two or three bond couplings, the Heteronuclear Multiple Bond Correlation (HMBC) experiment can be used. Figure 6 shows the long-range correlation of proton 8 with carbons 2, 3, 5, 7, 9 and 17 (the sequence shows the correlation with quaternary carbons, too).

Figure 6: HMBC spectrum of a 250 mM Bruccine sample in CDCl$_3$ showing the long-range couplings between ^1H and ^{13}C nuclei.