Artemisinin

Artemisinin is a widely used drug in the standard treatment of malaria. It is extracted from the plant *Artemisia annua*, sweet wormwood, but can also be produced in a semi-synthetic fashion. Figure 1 shows the 1H NMR spectrum of a 250 mM Artemisinin sample in CDCl$_3$ measured in a single scan taking 10 seconds to acquire.

1D Proton spectrum

![1D Proton spectrum](image)

Figure 1: 1H NMR spectrum of a 250 mM Artemisinin sample in CDCl$_3$ measured on a Spinsolve 60 MHz system in a single scan.

1D Carbon spectrum

Figure 2 shows the 13C NMR spectrum of 250 mM Artemisinin in CDCl$_3$ acquired using NOE polarization transfer from 1H to 13C and 1H decoupling. The 1D Carbon experiment using NOE is sensitive to all 13C nuclei in the sample. It clearly resolves all the expected resonances.

![1D Carbon spectrum](image)

Figure 2: 13C NMR spectrum of a 250 mM Artemisinin sample in CDCl$_3$ measured on a Spinsolve 60 MHz system in 205 minutes.
The 2D COSY experiment allows one to identify coupled ^1H nuclei as they generate cross peaks out of the diagonal of the 2D data set. In Figure 3 a large number of cross peaks can be nicely observed. For example, the protons at position 4 and 17 (dark blue) couple with each other. Furthermore, proton 18 couples with proton 17 (cyan) and 19 (pink).

Figure 3: ^1H 2D COSY experiment of a 250 mM Artemisinin sample in CDCl$_3$ acquired in 17 minutes on a Spinsolve 60 MHz system.

The HSQC is a powerful sequence widely used to correlate ^1H with the one-bond coupled ^{13}C nuclei. The Spinsolve is equipped with a multiplicity edited version (HSQC-ME) of this method. It provides the editing power of the DEPT-135 sequence, which is useful to differentiate the signals of CH$_2$ groups (blue) from CH and CH$_3$ groups (red). Figure 4 shows the HSQC-ME spectrum of a 250 mM Artemisinin sample in CDCl$_3$ acquired in 34 minutes.

Figure 4: HSQC-ME spectrum of a 250 mM Artemisinin sample in CDCl$_3$ showing the correlation between the ^1H (horizontal) and ^{13}C (vertical) signals.
2D HMBC

To obtain long-range \(^1\text{H}-^{13}\text{C}\) correlations through two or three bond couplings, the Heteronuclear Multiple Bond Correlation (HMBC) experiment can be used. Figure 5 shows the HMBC spectrum of a 250 mM Artemisinin sample measured in 68 minutes on our Spinsolve 60 MHz. As an example, the long-range correlation of protons 19 with carbons 2, 17 and 18 are marked. The experiment shows the correlation with quaternary carbons, too.

Figure 5: HMBC spectrum of a 250 mM Artemisinin sample in CDCl\(_3\) showing the long-range couplings between \(^1\text{H}\) and \(^{13}\text{C}\) nuclei.