Spinsolve 80

Artemisinin

Artemisinin is a widely used drug in the standard treatment of malaria. It is extracted from the plant *Artemisia annua*, sweet wormwood, but can also be produced in a semi-synthetic fashion. Figure 1 shows the ¹H NMR spectrum of a 250 mM Artemisinin sample in CDCl₃ measured in a single scan taking 10 seconds to acquire.

1D Proton spectrum magritek 10 seconds 10,13,20 Artemisinin Solvent = CDCI₃ Concentration = 250 mM Frequency = 80 MHz 1D Proton Number of scans = 1 Repetition time = 10 s Pulse angle = 90° Total experimental time = 10 s 16',19 14/15 17 15" 11 12' 18 12 1.03--00.1 1.24 6.07 5.35 4.38 4.11 0 2.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.0 1.5 1.0 0.5 0. f1 (ppm)

Figure 1: ¹H NMR spectrum of a 250 mM Artemisinin sample in CDCl₃ measured on a Spinsolve 80 MHz system in a single scan.

1D Carbon spectrum

Figure 2 shows the ¹³C NMR spectrum of 250 mM Artemisinin in CDCl₃ acquired using NOE polarization transfer from ¹H to ¹³C and ¹H decoupling. The 1D Carbon experiment using NOE is sensitive to all ¹³C nuclei in the sample. It clearly resolves all the expected resonances.

Figure 2: ¹³C NMR spectrum of a 250 mM Artemisinin sample in CDCl₃ measured on a Spinsolve 80 MHz system in 102 minutes.

Spinsolve 80

2D COSY spectrum

The 2D COSY experiment allows one to identify coupled ¹H nuclei as they generate cross peaks out of the diagonal of the 2D data set. In Figure 3 a large number of cross peaks can be nicely observed. For example, the protons at position 4 and 17 (dark blue) couple with each other. Furthermore, proton 18 couples with proton 17 (cyan) and 19 (pink).

Figure 3: ¹H 2D COSY experiment of a 250 mM Artemisinin sample in CDCl₃ acquired in 17 minutes on a Spinsolve 80 MHz system.

2D HSQC-ME

The HSQC is a powerful sequence widely used to correlate ¹H with the one-bond coupled ¹³C nuclei. The Spinsolve is equipped with a multiplicity edited version (HSQC-ME) of this method. It provides the editing power of the DEPT-135 sequence, which is useful to differentiate the signals of CH₂ groups (blue) from CH and CH₃ groups (red). Figure 4 shows the HSQC-ME spectrum of a 250 mM Artemisinin sample in CDCl₃ acquired in 17 minutes.

Figure 4: HSQC-ME spectrum of a 250 mM Artemisinin sample in $CDCI_3$ showing the correlation between the ¹H (horizontal) and ¹³C (vertical) signals.

Spinsolve 80

2D HMBC

To obtain long-range ¹H-¹³C correlations through two or three bond couplings, the Heteronuclear Multiple Bond Correlation (HMBC) experiment can be used. Figure 5 shows the HMBC spectrum of a 250 mM Artemisinin sample measured in 34 minutes on our Spinsolve 80 MHz. As an example, the long-range correlation of protons 19 with carbons 2, 17 and 18 are marked. The experiment shows the correlation with quaternary carbons, too.

Figure 5: HMBC spectrum of a 250 mM Artemisinin sample in CDCI₃ showing the long-range couplings between ¹H and ¹³C nuclei.

