Brucine (2,3-Dimethoxystrychnidin-10-one) is an alkaloid, structurally related to strychnine, but less toxic. Figure 1 shows the 1H NMR spectrum of a 250 mM Brucine sample in CDCl$_3$, measured in a single scan taking 10 seconds to acquire.

Figure 1: 1H NMR spectrum of a 250 mM Brucine sample in CDCl$_3$ measured on a Spinsolve 60 MHz system in a single scan.

13C Spectrum

Figure 3 shows the 13C NMR spectrum of 250 mM Brucine in CDCl$_3$ acquired using NOE polarization transfer from 1H to 13C and 1H decoupling. The 1D Carbon experiment using NOE is sensitive to all 13C nuclei in the sample. It clearly resolves all the expected resonances.

Figure 3: 13C NMR spectrum of a 250 mM Brucine sample in CDCl$_3$ measured on a Spinsolve 60 MHz system in 205 minutes.
2D COSY

The 2D COSY experiment allows one to identify coupled 1H nuclei as they generate cross peaks out of the diagonal of the 2D data set. In Figure 2 a large number of cross peaks can be nicely observed. For example, the protons at position 6 and 11 (light green) couple with each other. Furthermore, proton 19 couples with proton 10 (light blue), 12 (orange) and 20 (pink). In addition, the couplings between protons 8 and 9 (dark blue) as well as the couplings of protons 8 and 9 with protons 14 and 15 (dark green) can be nicely observed.

Figure 2: 1H 2D COSY experiment of a 250 mM Brucine sample in CDCl$_3$ acquired in 17 minutes on a Spinsolve 60 MHz system.

2D HSQC-ME

The HSQC is a powerful sequence widely used to correlate 1H with the one-bond coupled 13C nuclei. The Spinsolve is equipped with a multiplicity edited version (HSQC-ME) of this method. It provides the editing power of the DEPT-135 sequence, which is useful to differentiate the signals of CH_2 groups (blue) from CH and CH_3 groups (red). Figure 4 shows the HSQC-ME spectrum of a 250 mM Brucine in CDCl$_3$ acquired in 8 minutes.

Figure 4: HSQC-ME spectrum of a 250 mM Brucine sample in CDCl$_3$ showing the correlation between the 1H (horizontal) and 13C (vertical) signals.
To obtain long-range 1H-13C correlations through two or three bond couplings, the Heteronuclear Multiple Bond Correlation (HMBC) experiment can be used. Figure 5 shows the HMBC spectrum of a 250 mM Brucine sample measured in 34 minutes on our Spinsolve 60 MHz. As an example, the long-range correlations of proton 8 with carbons 17 (light green), 9 (dark green), 7 (dark blue), 5 (light blue), 2 (orange) and 3 (pink) are marked with circles. The experiment shows the correlation with quaternary carbons, too.