Levofloxacin

Levofloxacin is a commonly known antibiotic drug active against a range of bacterial infections. Structurally Levofloxacin belongs to the group of fluoroquinolones. It is a chiral compound in the (-)-(S) enantiomeric form. Figure 1 shows the ¹H NMR spectrum of a 250 mM Levofloxacin sample in DMSO-d₆ measured in a single scan taking 10 seconds to acquire.

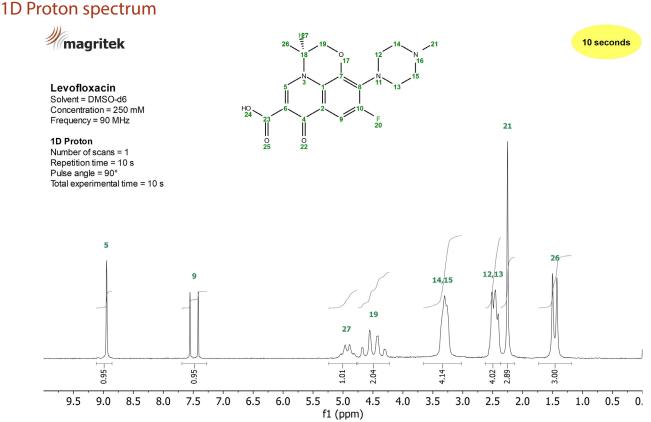
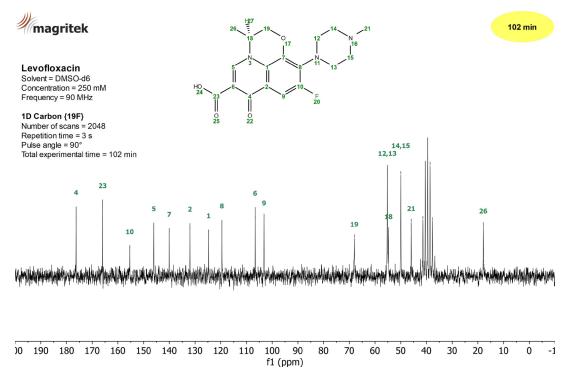



Figure 1: ¹H NMR spectrum of a 250 mM Levofloxacin sample in DMSO-d_z measured on a Spinsolve 90 MHz system in a single scan.

1D Carbon spectrum

Figure 2 shows the ¹³C NMR spectrum of 250 mM Levofloxacin in DMSO-d_o acquired using NOE polarization transfer from ¹H to ¹³C and ¹H decoupling. The 1D Carbon experiment using NOE is sensitive to all ¹³C nuclei in the sample. It clearly resolves all the expected resonances. The spectrum was aquired with both ¹H and ¹⁹F decopling.

2D COSY spectrum

The 2D COSY experiment allows one to identify coupled ¹H nuclei as they generate cross peaks out of the diagonal of the 2D data set. In Figure 3 a large number of cross peaks can be observed nicely. For example, the protons at position 26 and 19 (light blue) couple with each other. Furthermore, protons 12 and 13 couple with protons 14 and 15 (orange). In addition, the couplings between proton 27 and 5 (dark blue), 19 (dark green) and 26 (light green) can be observed nicely.

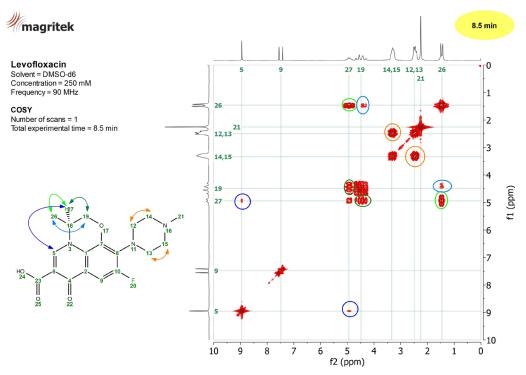


Figure 3: ¹H 2D COSY experiment of a 250 mM Levofloxacin sample in DMSO-d₆ acquired in 8.5 minutes on a Spinsolve 90 MHz system.

2D ¹H-¹³C HSQC-ME

The HSQC is a powerful sequence widely used to correlate the ¹H with the one-bond coupled ¹³C nuclei. The Spinsolve is equipped with a multiplicity edited version (HSQC-ME) of this method. It provides the editing power of the DEPT-135 sequence, which is useful to differentiate between the signals of the CH₂ groups (blue) from the CH and CH₃ groups (red). Figure 4 shows the HSQC-ME spectrum of a 250 mM Levofloxacin sample in DMSO-d₆ acquired in 4 minutes. The measurement time was optimized applying NUS (non uniform sampling).

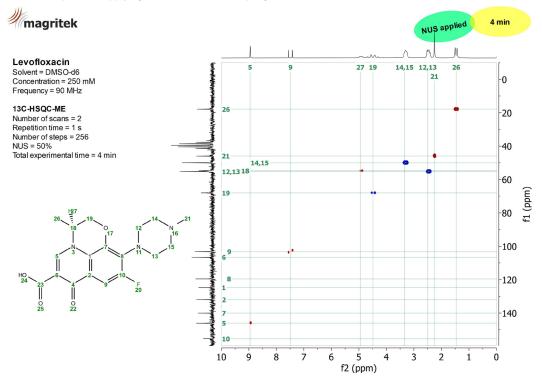


Figure 4: HSQC-ME spectrum of a 250 mM Levofloxacin sample in DMSO-d_s showing the correlation between the ¹H (horizontal) and ¹³C (vertical) signals.

2D ¹H-¹³C HMBC

To obtain long-range ¹H-¹³C correlations through two or three bond couplings, the Heteronuclear Multiple Bond Correlation (HMBC) experiment can be used. Figure 5 shows the long-range correlation of proton 5 with carbons 1, 4, 6, 18 and 23 (the sequence shows the correlation with quaternary carbons, too).

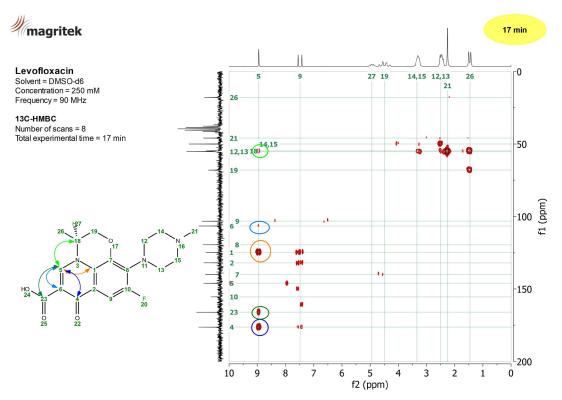


Figure 5: HMBC spectrum of a 250 mM Levofloxacin sample in DMSO-d₆ showing the long-range couplings between ¹H and ¹³C nuclei.

1D Fluorine spectrum

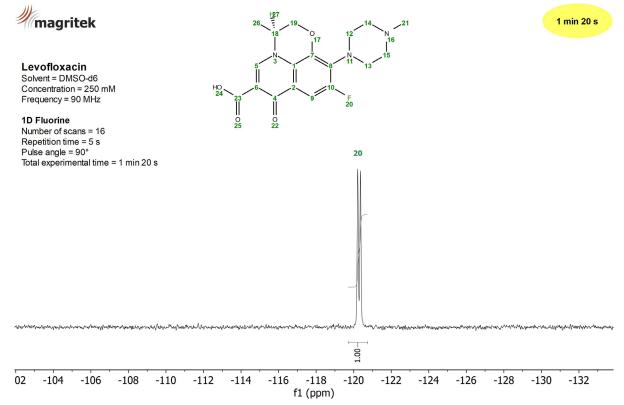


Figure 6: ¹⁹F NMR spectrum of a 250 mM Levofloxacin sample in DMSO-d₆ measured on a Spinsolve 90 MHz system in 16 scans.

2D ¹H-¹⁵N HMBC

To obtain long-range ¹H-¹⁵N correlations through two or three bond couplings, the Heteronuclear Multiple Bond Correlation (HMBC) experiment can be used. Figure 7 shows the full spectral range and depicts nicely all long-range correlations of the three nitrogen nuclei 3, 11 and 16. Here, nitrogen 3 couples with the protons at positons 5 and 26, nitrogen 11 couples with protons 12 and 13, as well as nitrogen 16 couples with protons 14,15 and 21, respectively. To note is the great SNR on the ¹⁵N trace that indicates even reduced total measurement times to the 2 h 17 min shown.

Figure 7: ¹⁵N-HMBC spectrum of a 250 mM Levofloxacin sample in DMSO-d₆ showing the long-range couplings between ¹H and ¹⁵N nuclei.

