332. Fast quantification of water content in glycols by compact 1H NMR spectroscopy
Sergio Alejandro Ortiz Restrepo and Alina Adams; Talanta; (2022); DOI: 10.1016/j.talanta.2022.123973
Glycols are key chemicals for many applications in different fields of activities. Being highly hydroscopic, glycols contain usually water. The presence of water, even in tiny amounts, can affect their chemical and physical properties. Therefore, the accurate determination of water content is essential for any intended applications. In this context, a novel method using low-field Nuclear Magnetic Resonance (NMR) spectroscopy is introduced. The proposed approach offers a straightforward, fast, low-cost, and versatile solution for water quantification in glycols without the need for reagents or calibration data. It is demonstrated by quantifying the water concentration up to 11Â wt% in aqueous ethylene glycol (EG) and triethylene glycol (TEG) mixtures with the help of lineshape analysis of the corresponding proton spectra. The limit of detection, achieved within 1Â min of measuring time, was 0.05Â wt% for water in EG and 0.15Â wt% in TEG. The excellent agreement between the NMR results and those from the Karl-Fischer titration indicates that the proposed NMR-based approach has a great potential to be used as an alternative to the Karl-Fischer method. In addition, it is expected that the same methodology can be applied for water quantification in more complex glycolic solutions and other mixtures.