483. An integrated self-optimizing programmable chemical synthesis and reaction engine
Artem I. Leonov, Alexander J. S. Hammer, Slawomir Lach, S. Hessam M. Mehr, Dario Caramelli, Davide Angelone, Aamir Khan, Steven O’Sullivan, Matthew Craven, Liam Wilbraham & Leroy Cronin, Nature Communications, (2024), DOI: 10.1038/s41467-024-45444-3
Robotic platforms for chemistry are developing rapidly but most systems are not currently able to adapt to changing circumstances in real-time.We present a dynamically programmable system capable of making, optimizing, and discovering new molecules which utilizes seven sensors that continuously monitor the reaction. By developing a dynamic programming language, we demonstrate the 10-fold scale-up of a highly exothermic oxidation reaction, end point detection, as well as detecting critical hardware failures. We also show how the use of in-line spectroscopy such as HPLC, Raman, and NMR can be used for closed-loop optimization of reactions, exemplified using Van Leusen oxazole synthesis, a four-component Ugi condensation and manganese-catalysed epoxidation reactions, as well as two previously unreported reactions, discovered from a selected chemical space, providing up to 50% yield improvement over 25–50 iterations. Finally, we demonstrate an experimental pipeline to explore a trifluoromethylations reaction space, that discovers new molecules