550. Determination of Nicotine Protonation State in E‑Liquids by Low-Resolution Benchtop NMR Spectroscopy
Arnout P. T. Hartendorp, Imane Ahlal, Wouter F. Visser, Ernesto P. Baloe, Daan G. W. Lensen, Max J. van Alphen, Hetty Nagtegaal, Wilbert de Ruijter, Walther N. M. Klerx, Reinskje Talhout, ChemResToxicology, (2024), DOI: 10.1021/acs.chemrestox.3c00417
Over several years, e-liquids with “nicotine salts” have gained considerable popularity. These e-liquids have a low pH, at which nicotine occurs mostly in its monoprotonated form. Manufacturers usually accomplish this by the addition of an organic acid, such as levulinic acid, benzoic acid, or lactic acid. Nicotine in its protonated form can be more easily inhaled, enhancing the addictiveness and attractiveness of products. Several techniques have been described for measuring the protonation state of nicotine in e-liquids. However, nuclear magnetic resonance (NMR) spectroscopy is particularly suited for this purpose because it can be performed on unaltered e-liquids. In this article, we demonstrate the suitability of a benchtop NMR (60 MHz) instrument for determining the protonation state of nicotine in e-liquids. The method is subsequently applied to measure the protonation state of 33 commercially available e-liquids and to investigate whether the vaping process alters the protonation state of nicotine. For this purpose, the protonation state in the condensed aerosol obtained by automated vaping of different e-liquids was compared with that of the original e-liquids. Two distinct populations were observed in the protonation state of nicotine in commercial e-liquids: free-base (fraction of free-base nicotine αfb > 0.80) and protonated (αfb < 0.40). For 30 e-liquids out of 33, the information on the packaging regarding the presence of nicotine salt was in agreement with the observed protonation state. Three e-liquids contained nicotine salt, even though this was not stated on the packaging. Measuring the protonation state of nicotine before and after (machine) vaping revealed that the protonation state of e-liquids is not affected by vaping. In conclusion, it is possible to determine the nicotine protonation state with the described method. Two clusters can be distinguished in the protonation state of commercial e-liquids, and the protonation state of nicotine remains unchanged after vaping.